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A 
precise quantification of behavior is essential for under-
standing brain function. Neuroscientists and ethologists 
have studied animal behavior for decades seeking to iden-

tify the underlying neural circuits1,2. The quest for linking neuronal 
activity to specific behaviors in a laboratory setting imposes sev-
eral constraints on experimental frameworks3. Besides the obvious 
need for tractable variables, the studied behavior should retain most 
ethologically relevant sensory, motor and cognitive components, 
while remaining reproducible. The environmental setting in which 
the animal moves should also be flexible enough to allow probing 
for multiple parameters involved in the studied behavior. Finally, 
simultaneous recordings or manipulations of neuronal activity  
is essential.

One strategy is to partially or fully immobilize the animals in 
a virtual reality environment4. This approach facilitates detailed 
observation of behavior and allows for accurate closed-loop stimu-
lus control. It can also provide convenient and stable access to the 
brain for optical5,6 or electrophysiological recordings7. However, 
important drawbacks exist8. In most instances, natural motor out-
put and the related sensory feedback are substantially disrupted, 
possibly inhibiting normal spatial processing9 (although see  
refs. 10,11). Furthermore, virtual reality is often limited to a single sen-
sory modality, such as vision4–6,12, somatosensation13 or olfaction14. 
Finally, studying typical primate motor patterns such as climbing or 
jumping and probing behaviors such as social interactions involving 
multiple animals is more challenging in virtual reality.

An alternative approach is to retain the animal’s full sensorimo-
tor experience by studying its behavior while the animal is freely 
moving in naturalistic environments. This, however, poses chal-
lenges regarding behavioral control and quantification. It neces-
sitates knowing where the animal is and what it does, as well as 
tracking the identity of multiple subjects. Systems for tracking in 
naturalistic environments have been developed for several animal 

species, including insects15–19, rodents20–22, primates23,24 or flying 
bats25,26. Multiple subject identification can be achieved based on the 
recognition of coat color27, wearable colored markers23,28, electronic 
markers29, Kalman and nearest neighbor filters17 or deep learn-
ing19,30. Finally, immersive visual virtual reality for unrestrained ani-
mals has also been developed11,31,32. However, by projecting a single 
viewpoint into the arena, these systems are currently restricted to 
the use with single animals, and provide only nonbinocular views. 
In general, most tracking systems are limited by small and relatively 
empty laboratory environments, and require bright and even illu-
mination (although see refs. 23–25) to extract position and behav-
ior or to provide feedback. Studying animals in more naturalistic 
environments with noisy or changing backgrounds and poorly lit 
conditions (for example, in arboreal and nocturnal settings), poses 
serious challenges to most existing tracking systems.

Finally, interacting with freely roaming and fast-moving animals 
in a closed-loop manner for behavioral conditioning would require 
a tracking framework to be extremely fast, robust and to provide 
sufficient high-resolution information about the tracked animal. 
However, most current systems for freely moving animals are still 
designed for offline behavioral analysis (although see refs. 11,19,31–34) 
and thus cannot react to behavioral elements in the order of tens of 
milliseconds. Taken together, there is currently a need for an inte-
grated framework able to carry out the next generation of reproduc-
ible neuroethological experiments with freely moving animals in 
more naturalistic settings.

Results
Implementation of the EthoLoop tracking system. To follow 
the behavior of freely roaming nocturnal animals, such as mice 
(Mus musculus) or mouse lemurs (Microcebus murinus, a small 
arboreal primate), in naturalistic 3D environments, we developed 
an ultra-fast, multi-camera closed-loop tracking system capable 
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of providing simultaneous close-up views and analyses of the  
ethology of tracked individuals (Fig. 1). We hence termed the  
system EthoLoop.

Multiple high-speed infrared cameras are installed above a track-
ing arena, providing views of the freely moving animals from dif-
ferent angles (Fig. 1a). The images from each camera are processed 
separately to extract the two-dimensional (2D) positions of each 
animal. The identification and tracking of individuals in the dark is 
either achieved using retro-reflective passive markers (Fig. 1d and 
Supplementary Video 1) or, when multiple individuals have to be 
tracked simultaneously, by spectrally separating the hue of miniature 
battery-powered infrared light emitting diodes (LEDs) with differ-
ent wavelengths (Fig. 1f, Supplementary Fig. 1 and Supplementary 
Video 2). To increase the speed and decrease the processing time, 
the spatial localization and spectral separation of each camera view 
is carried out on stand-alone graphical processing units (GPUs)  
(Fig. 1a). The position of each animal is then transformed into 
real-world 3D coordinates by geometric triangulation17,23 from the 
different camera views (Fig. 1a). We achieved maximal tracking at 
rates ranging from 785 to 580 Hz (for 1–3 targets, 1 ms exposure time, 
Fig. 1c), with delays below 8 ms for up to three targets (Fig. 1b and 
Supplementary Fig. 2). The ideal number of cameras (minimum 2)  
depends on the complexity of the obstructing structures in the 
environment. Adding more cameras can also improve the tracking 
accuracy in larger arenas, if they reduce the minimal distance to the 
target. Thus, by combining off-the-shelf hardware and open source 
code, this system can be adapted to spatial scales of 1 m3 (Fig. 1a  
and Supplementary Video 1), 10 m3 (Fig. 1f and Supplementary  
Videos 2 and 3) and up to 100 m3 (Supplementary Fig. 3 and 
Supplementary Video 4). Tracking multiple animals in such large 
arenas while preserving their respective identity allows detailed 
study of their social interactions (Supplementary Fig. 4). Finally, 
to facilitate the installation of additional cameras in large-scale and 
challenging conditions (trees, branches), all cameras and GPUs 
can be battery-powered and communicate via wireless network  

protocols, thus removing the need for external wiring and facilitat-
ing their placement in strategic locations.

Although the GPU-based 3D tracking allows determining the 
animal’s position with high temporal resolution (Fig. 1b,c) and pre-
cision (Supplementary Fig. 1i), it does not provide any information 
about the actual behavior carried out at that location. Inspired by the 
pioneering work on freely flying and walking insects15,17, we therefore 
added a gimbal-mounted, close-up video camera to the EthoLoop 
system, providing a focused and magnified view continuously 
centered on the tracked individual (Fig. 1e,g and Supplementary  
Video 3). This way, the behavior of a tracked animal can be ana-
lyzed in detail, independent of the actual size of the tracked  
volume in which it navigates. Since jumping primates can reach 
speeds up to 2 m s−1 (Supplementary Video 3), the focusing mech-
anism of the close-up system was driven by a liquid lens capable 
of changing focus within milliseconds. Although we only used a 
single close-up view for our experiments, the position of one or 
multiple animals can be forwarded to multiple close-up systems in  
parallel. To ensure sufficient illumination of the tracked subject 
in dark large-scale environments, we mounted an infrared light 
source in parallel to the camera path (Supplementary Video 4) 
or on a separate gimbal system. This allowed a targeted and eco-
nomical illumination independently of any ambient light. In sum-
mary, the EthoLoop system combines fast and accurate tracking of 
animal position even in large, arboreal or nocturnal settings with 
high-resolution close-up views of their behavior.

Observation and manipulation of natural foraging behavior 
using remote-controlled reward sources. Out of all animal behav-
iors, foraging is most likely one of the most universal activities35,36.  
It was probably a prominent driver behind main evolutionary spe-
cializations of sensory, motor and cognitive capacities in primates 
and other clades37. To study naturalistic foraging in laboratory set-
tings, the distribution of food sources, as well as sensory cues signal-
ing their availability would ideally be controlled by the experimenter 
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Fig. 1 | The EthoLoop behavioral tracking system. a, Schematic depiction and spatial arrangement of the different EthoLoop elements. Multiple infrared 

cameras (cameras 1–3) with dedicated GPUs process images from different viewing angles. The identity and positions of the detected markers are 

wirelessly transmitted to a central host computer for 3D reconstruction (triangulation, followed by rotation and transition into real-world 3D coordinates). 

The 3D coordinates are forwarded to control the position and focus of a gimbal-mounted close-up camera. The images from the close-up system are either 

saved for offline analysis or processed on-the-fly to trigger remote-controlled reward boxes (RECO box). RECO boxes are connected wirelessly and can 

provide auditory or visual stimuli or liquid rewards. b, Latencies for the communication with the RECO box (blue), reconstructing 3D position  

(1 and 3 targets, orange and red), and the real-time posture analysis (green). c, Intervals for consecutive reconstitutions (1 and 3 targets, orange and red) 

and time for the postural analysis (green) of two subsequent frames. d, 3D trajectory of a mouse tracked in a naturalistic environment (red line, 60 min, 

Supplementary Video 1), in an arena covered with wooden branches (representative example of 26 experiments). The tracking was carried out in the 

dark and based on a passive retro-reflective marker fixed around the neck. e, Still image from the infrared close-up camera following the position of the 

tracked mouse in d. f, 30 min of 3D trajectories of two mouse lemurs (red, blue) tracked in an arena filled with tree branches (representative example of 20 

experiments). g, Infrared close-up image of the two tracked mouse lemurs (from f).
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in real time, taking into account the animal’s actual position and 
behavior. This way, specific situations could be created in a repro-
ducible manner. We therefore integrated small, remote-controlled 
and interactive reward boxes (RECO box) into the EthoLoop frame-
work. The RECO boxes are able to play sensory cues (auditory or 
visual) and provide calibrated amounts of liquid rewards (Fig. 1a 
and Supplementary Fig. 5a,b). Multiple of these battery-powered 
boxes can be distributed in the environment to mimic the availabil-
ity and cues associated with natural resources.

To illustrate the range of basic behavioral patterns in freely 
roaming mouse lemurs, we positioned multiple RECO boxes in 
the behavioral arena (Fig. 2a and Extended Data Fig. 1a). To cover 
the volumetric space more evenly and make the experiments more 
reproducible, we also replaced the naturalistic branches with a 
parameterizable artificial lattice maze38,39. The availability of a liquid 
reward at a given location was indicated by an auditory cue (9 kHz 
tone, 1 s intermittent at 0.5 Hz). To mimic a variable degree of pre-
dictability of the next food location, we first activated the different 
boxes sequentially in a fixed order (Fig. 2b,c, Supplementary Video 5  
and Extended Data Fig. 1b,c). This type of activation triggered 
highly stereotypical and most likely memory-guided paths. On 
the other hand, the random activation of a RECO box (triggered 
by the specific spatial location of the animal, Fig. 2d) established 
a situation where the animal could not predict the next reward 
location, and hence resulted in more variable behavioral patterns  
(Fig. 2d). The location-triggered random activation allowed us to 
have the mouse lemurs cover a large part of the 3D lattice maze  
(Fig. 2b,c). These data illustrate how combining real-time tracking 
with remotely controlled elements can rapidly shape specific behav-
iors and force the animals to adopt different foraging strategies.

Other, more global environmental parameters such as illumina-
tion also affect behavior in a given environment36. To highlight how 
our system can detect behavioral signs related to such global param-
eter changes, we reduced the illumination levels from dim (<1 lux, 
Extended Data Fig. 1d) to complete darkness (Extended Data Fig. 1e  
and Supplementary Video 6). This triggered a profound change in 

the movement parameters including a reduction in the number of 
jumps (Extended Data Fig. 1f), or the locomotor speed distribution 
(Extended Data Fig. 1g and Supplementary Video 6).

Taken together, the combination of the EthoLoop tracking sys-
tem with interactive agents, such as RECO boxes, or changes of 
global parameters, such as illumination, is ideally suited for explor-
ing different aspects of ethologically relevant parameters within 
naturalistic settings.

Fully automated conditioning of behavior in naturalistic settings. 
To explore the possibility of using the EthoLoop system to rein-
force specific behaviors by operant conditioning40, we combined the 
principle of clicker training by human experts41,42 with real-time and 
automated behavioral analysis. An auditory stimulus (9 kHz tone) 
followed by a small liquid reward from one of the RECO boxes was 
triggered on an automated detection of a specific behavior. To test 
the effectiveness of such automated conditioning procedures, we 
first conditioned mice to enter an arbitrarily chosen location in a 
naturalistic environment designed with tree branches (Fig. 3a and 
Extended Data Figs. 2 and 3). On detecting an entry into a defined 
location, the tracking system triggered a sound from a single RECO 
box and a reward was available for the subsequent 10 s in the cen-
ter of the arena. Mice learned the task (Fig. 3b–d and Extended 
Data Fig. 2b), and the number of entries into the conditioned area 
increased compared to the initial rate (Fig. 3d and Extended Data 
Fig. 2b–f). Similarly, we were able to condition a mouse lemur to 
climb repeatedly to an experimenter-defined position within the 
3D lattice maze (Fig. 3e and Extended Data Fig. 4a). The number 
of entries increased over a 30 min session (Fig. 3f–h and Extended 
Data Fig. 4b,c).

Inspired by more sophisticated behavioral conditioning experi-
ments carried out by professional animal trainers with pets or zoo 
animals41,42, we further sought to use the real-time close-up video 
stream to automatically detect specific postures43 and reinforce 
them using the RECO boxes. As a proof of principle, we chose to 
reinforce rearing behavior, which is observed spontaneously in 
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Fig. 2 | Foraging of a mouse lemur in a 3D lattice maze. a, Four RECO boxes (colored cubes) spatially distributed at different locations of a lattice maze 

(0.5 m branch length). RECO boxes are shown in different colors and are activated with different sequences. Reward availability was indicated by a 9 kHz 

tone. The actual reward delivery was made conditional on the animal’s arrival at the feeder within 10 s. b,c, 10 min of 3D trajectory of the mouse lemur 

where the RECO boxes are activated in a circular (b) or crossed order (c). The trajectory color indicates the currently activated RECO box (representative 

trajectories of eight experiments). d, 3D trajectory of a mouse lemur when activation order was random and conditional on the actual position of the 

animal in the arena (representative trajectory of four experiments).
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both mice and mouse lemurs (Fig. 4). To detect rearing, we first 
trained a deep-learning network (DeepLabCut44) to track different 
body parts in a set of hand-annotated close-up videos (Fig. 4a). In a  
second step, we adapted DeepLabCut to classify the streamed 
images and localize the position of the different body parts in real 
time in the stream of close-up images (Fig. 4a). Using this proce-
dure, we were able to identify body parts at an average rate of 93 Hz 
(Fig. 1c, green histogram) using a standard commercial computer 
graphics card. In a third step, the rearing behavior was detected 
using a set of geometrical rules, taking into account the relative 
spatial position of body parts. Reinforcing automatically detected 
rearing with a click (9 kHz), followed by a reward from a nearby 
RECO box (Fig. 4a), mouse lemurs rapidly increased the number 
of rearings (red arrows in Fig. 4g,h,i and Supplementary Video 7). 
In parallel, we also conditioned mice to rear on top of a branch in 
a naturalistic environment (Fig. 4b and Extended Data Fig. 5) and 
at a specific location in an open-field arena (Extended Data Fig. 6). 
Mice increased the number of rearings within the session (Fig. 4c–e 
and Supplementary Video 8). These experiments illustrate how 
real-time and automated behavioral classification by the EthoLoop 
system can be efficiently used to shape or reinforce specific actions 
in situations that would have been very challenging to do for any 
trained human observer (due to fast-moving subjects, poor illumi-
nation, large arenas or partial occlusions).

Operant conditioning by optogenetic stimulation of reward  
circuits. Using behavior-triggered operant conditioning with actual 
cues and rewards can become problematic when multiple subjects 
are present in the vicinity, since the reinforcement should target 
only one individual. Individualized conditioning can be achieved 
by optogenetic tools; for example, by the selective activation of 
dopamine (DA) neurons in the ventral tegmental area (VTA)45.  
We tested whether behaviors detected by the EthoLoop system can 
also be reinforced by real-time optogenetic stimulation of VTA DA 
neurons in mice (Fig. 5).

We first conditioned mice to enter a specific location in the arena 
by optogenetically activating VTA DA neurons either wirelessly 
through a portable, battery-powered stimulator (Supplementary 
Fig. 6) in naturalistic environments (Fig. 5b), or tethered via an 
optical fiber connected to a blue laser in open-field environments. 
Within single sessions, we successfully conditioned mice to enter a 
defined place more often (Fig. 5e and Extended Data Fig. 7).

In a second set of experiments, VTA DA neurons were activated 
on the detection of a predefined behavioral syllable43. As before 
(Fig. 4), we chose to reinforce rearing on the hind limbs (Fig. 5a). 
On reinforcement with optogenetic VTA stimulation, mice started 
rearing more within the specified area (Fig. 5g,i, Extended Data 
Fig. 8 and Supplementary Video 9). These experiments show that 
the EthoLoop system is well suited to provide precisely timed and 
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behaviorally triggered optogenetic stimuli to freely moving animals 
in a fully automated manner and thus shape specific behavioral  
elements within single behavioral sessions.

Combining 3D tracking with wireless neuronal recordings. The 
ultimate goal of many neuroethological studies is to link a specific 
behavior to its underlying neuronal activity. To illustrate the fea-
sibility of simultaneous neuronal recordings in combination with 
actively controlled foraging (Fig. 2), we set up a miniature wire-
less electrophysiological recording system for freely moving mouse 
lemurs. We recorded neurons in the dorsal CA1 of hippocampus 
(Supplementary Fig. 7), a brain area related to various aspects of 
spatial navigation46–48.

By synchronizing the recorded activity with the 3D position of 
the mouse lemur (Fig. 6) we found neurons that were responsive to 
a large region (floor, Fig. 6a,b) or a specific location (single branch, 
Fig. 6c,d and Extended Data Fig. 9) of the lattice maze, or mainly 
when moving in one direction on branches with a given diameter 
(Fig. 6e–i and Extended Data Fig. 10). The EthoLoop system allowed 
us to induce the specific foraging patterns and thus ensure that the 
animals either cover large parts of the lattice maze (Fig. 6a,c) or  

create multiple reproducible paths across a given location (Fig. 6e). 
These recordings are to our knowledge among the first examples of 
3D place cell-like activity recorded in freely roaming primates and 
illustrate the vast potential for future experiments when combining 
the EthoLoop system with wireless electrophysiology.

Discussion
EthoLoop is a video tracking framework that allows following ani-
mal behavior in naturalistic environments. More importantly, it can 
actively shape behaviors via closed-loop interactions. Such active 
interaction with the tracked subjects opens possibilities for many 
types of experiment ranging from automated reinforcement of 
innate sequences to the learning of complex cognitive tasks.

Furthermore, its scalability as well as its wireless connectivity to 
battery-powered optogenetic stimulation and electrophysiological 
recording devices make it a powerful tool for characterizing com-
plex behaviors in large-scale and naturalistic settings. The pos-
sibility of using batteries also as a power source for cameras and 
RECO boxes furthermore opens the door to study the behavior of 
wild animals in their natural habitats. Adding more tracking and 
close-up cameras will be necessary, however, if foliage or branches 
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are too obstructive or if the behavior of multiple animals needs to be  
characterized simultaneously at high resolution.

We have shown that synchronized optogenetic manipulations 
and electrophysiological recordings during free navigation are, 
in principle, feasible. Similar to the pioneering work with freely  
flying bats25,26,49 we have chosen data loggers as recording devices. 
For future closed-loop experiments involving triggering events  
by neuronal activity, actively transmitting recording systems will  
be necessary.

Our experiments illustrate that the EthoLoop system is ideally 
suited to studying behaviors such as foraging35. Foraging provides 
a unique setting where not only the limits of multi-sensory integra-
tion, sensory-guided motor control, high level cognition or 3D spa-
tial navigation25,26,39,49 can be probed in a reproducible manner, but 
it can also become a powerful tool for dissecting neuronal dynamics 
underlying decision making and economic choice35.

The overall principles of the EthoLoop framework (close-up 
view, online classification, interaction with RECO boxes) are also 
applicable to other real-time tracking systems11,15–18,23,29 and might 
thus be combined with already existing hardware (as long as the 
relative position can be updated fast enough). Finally, the recent 
emergence of markerless methods for tracking multiple subjects19 or 
for behavioral analysis going beyond basic postures43,44,50 can also be 
combined with this framework. Technically, using wireless sensors, 
actuators and automated analysis can be considered a particular 
extension of the ‘Internet of Things’51. Hence, hardware and soft-
ware development from the Internet of Things field will most likely 
inspire the design of improved devices and enable better behavioral 
models and analysis methods.
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Methods
Hardware. Infrared real-time video tracking system. Four to six high-speed USB3 
cameras (MQ013CG-ON, XIMEA) were used for tracking. >e cameras were 
equipped with wide-angle lenses (NAVITAR, f4.5 mm, 1.4) and infrared long-pass 
$lters (FGL 665, >orlabs, or 832 nm Bandpass Filter, Edmund Optics) to eliminate 
light in the visible range. Each camera was connected via a USB connection 
to an independent GPU-based microprocessor (Jetson TK1 or TX2, NVIDIA, 
running Linux4Tegra). >e microprocessors communicated via ethernet (TK1) 
or WIFI (TX2) with a central host machine (Optiplex 9020, Intel Core i7, Dell, 
running Linux Ubuntu 16.04 LTS) using a wireless router (RT-AC88U, ASUS). 
An additional USB3 camera (MQCG-ON, XIMEA) was connected to the host 
machine for continuous monitoring of the experimental room. Cameras and GPU 
units could either be powered by external power supplies or with 12-V car batteries 
(44 ampere hours (Ah), Miocar). When tracking with passive re%ective markers 
(see below), the tracking cameras were equipped with a custom illumination ring 
of 20 LEDs with wavelength of 850 nm (TSHG6400, Vishay Semiconductors).

Portable passive markers. Passive reflective markers consisted either of 
retro-reflective spheres (14 mm, Optitrack), or were custom made with flexible 
retro-reflective transfer foil (Seritec) in the shape of a neck collar.

Portable active markers. To track multiple animals simultaneously, infrared LED 
light sources of different wavelengths were used (SMC660, SMC750, SMC830, 
Roithner). These wavelengths are beyond the visible spectrum of mouse lemurs, 
and therefore do not interfere with their photoperiod52. To make the light spot 
visible from wide angles, the light was diffused using 6-mm opal glass diffuser (no. 
46163, Edmund Optics). To hold the light sources on the top of the neck of the 
mouse lemurs, the animal carried a custom collar around its neck with a miniature 
rechargeable battery attached below (Lipo 3.7 V, 140 mAh, LP451430). The total 
weight of the neck collar including the battery was <4 g.

Close-up imaging system. The close-up imaging system consisted of a near-infrared 
enhanced CMOS camera (MQ013RG-E2, XIMEA), mounted on the center of 
a custom designed two-axis gimbal, actuated by two high-power digital servo 
motors (MX-64, Dynamixel). The camera was equipped with a high-resolution 
lens (Xenon, 2.0/50 mm, Schneider or a Rodagon, 4.0/80 mm, Rodenstock) and an 
electrically tunable lens (EL-16-40-TC, Optotune). According to the manufacturer’s 
specification, the response time of this lens is ~7 ms for a square pulse of 0–250 mA. 
The central host machine was communicating in real time with the servos via a 
serial port protocol (USB2Dynamixel). The focus of the electrically tunable lens 
was simultaneously controlled via ethernet protocol and a dedicated controller 
(TR-CL180, GIGE Vision). For recordings with mouse lemurs, the close-up camera 
system was protected with a transparent Plexiglas half-dome (40 cm, Lacrylic shop).

Target illumination system. To illuminate animals for the close-up imaging system, 
a high-power infrared LED (H2W5, 850 nm) and reflector (10158, Roithner) 
or a narrow beam LED (ELJ-650-637, Roithner) was mounted in parallel with 
the close-up imaging system. Alternatively, the target illumination system was 
mounted separately on a second two-axis gimbal powered by two digital servo 
motors (MX-64, Dynamixel) and were controlled via a serial port  
(USB2, Dynamixel).

Remote-controlled stimulus and reward boxes (RECO box). The RECO box is based 
on a low-power WiFi-enabled microprocessor (MKR-1000, Arduino) powered 
by a lithium ion battery (3.7 V, 7.8 Ah, Pi-shop) and interacted via a wireless user 
datagram protocol (UDP) protocol with the host computer. The following parts 
were packed inside a waterproof plastic box (100 × 100 × 90 mm3, RND 455-00123, 
RND Component) and held in place by a custom 3D-printed insert. An optical 
lick port with a single lick spout was mounted on the top cover of the plastic box. 
Auditory stimuli (9 kHz tone) were generated by a piezo speaker (KPEG-126, 
Kingstate), and loud clicks by a solenoid valve (ZHO-0420L/S, Adafruit) tapping 
against the plastic side wall. A green LED (565 nm) was activated as a visual cue, 
whereas an infrared LED (750 nm) was used to localize the position of the RECO 
box by the tracking system. The liquid reward was stored in a 20-ml glass bottle 
and delivered to the lick port by a peristaltic pump (OINA). The stepper motor 
(QSH-2818, Trinamic) of the pump was controlled via a low-voltage stepper driver 
(DRV8833, Adafruit).

Software. EthoLoop software was written in C++ using OpenCV and CUDA 
libraries. Real-time 3D visualization of data points was done by gnuplot (www.
gnuplot.info). Dynamixel SDK libraries for C++ were used to control the servos 
of the close-up system (www.github.com/ROBOTIS-GIT). RECO boxes were 
programmed with Arduino software (IDE).

Animals. Mouse lemurs. Four adult gray mouse lemurs (M. murinus) were used 
for this study (Supplementary Table 1). All mouse lemurs were born and raised in 
the ‘Mouse Lemur Platform’ (authorization number E-91-114-1) of the Museum of 
Natural History in Brunoy, France, under the supervision of the sta" of the UMR 
CNRS-MNHN 7179-MECADEV. >e procedures are in accordance with European 

animal welfare regulations and were reviewed by the local ethics committee 
(Comité d’éthique en expérimentation animale no. 68) in Brunoy, France, by 
the ethics committee of the University of Geneva, Switzerland, and authorized 
by the French ‘Ministère de l’éducation nationale de l’enseignement supérieur 
et de la recherche’. All experiments involving mouse lemurs were carried out in 
Brunoy, France. >e behavioral experiments were restricted to the awake period 
of their circadian cycle (dark). Animals were housed socially (2 or 3 per cage) in 
cages (50 × 60 × 70 cm3) with wooden branches, leaves and wooden nest boxes. 
Temperature was kept between 24 and 26 °C, relative humidity was approximately 
55% and arti$cial light cycle was 14 h on per day (winter period53). Animals had 
free access to water and food consisting of pieces of fresh apples and bananas, 
insect larvae and a liquid food mix (condensed milk, egg yolk, cottage cheese, spice 
bread, baby milk powder diluted in water and homogenized in a kitchen mixer).

Mouse lemur experimental room. The experimental room for the mouse lemurs 
(1.7 × 2 × 3.1 m3) was covered with matt black paint to avoid reflections of the 
infrared light sources. The mouse lemurs were allowed to freely roam in the room. 
The lighting condition of the room was controlled in respect to the animals’ day/
night cycles and the temperature was maintained at 25 °C. For initial tracking 
sessions and social interactions, the experimental room was equipped with tree 
branches, food platforms and wooden nest boxes (one per animal) (Fig. 1). For 
closed-loop experiments, the room was equipped with a custom-made 3D lattice 
maze inspired by ref. 38. The sides of the lattice cubes (500 mm) were built out of 
round wood and ranged in diameter from 4 to 24 mm.

During the days of the behavioral experiments, food availability was limited to 
the behavioral sessions to increase motivation. The weight and overall behavior of 
the animals was monitored twice a day. The animals were habituated to the RECO 
boxes in their home cages, where liquid food (described above) was available at 
random moments (on average every minute). Reward availability was indicated 
with an auditory cue (9 kHz tone approximately every minute) and delivery 
was triggered if a lick followed within 30 s. The conditioning experiments were 
usually stopped after the animals performed ~120 trials (reward size, ~0.02 ml of 
liquid food mix) or when they showed a drop in motivation (ignoring the task 
for >5 min). Additional food was supplemented after the experiment to keep the 
weight stable.

Mice. Ten laboratory mice (C57Bl/6J, Jackson Laboratory) were used for the 
conditioning experiments (six mice for open-field and four mice for the 3D arena). 
All experiments with mice were carried out in Geneva, Switzerland, and reviewed 
by the local ethics committee and authorities of the Geneva canton. Animal cages 
were kept in the animal facility (temperature of 21 °C and humidity of 50%) and 
each cage was housing a maximum of five mice. During behavioral experiments, 
access to water was restricted to the behavioral session and limited to 1 ml per 
day54. Mice were monitored daily and additional water was provided if necessary. 
All the experiments were carried out in the dark period of their circadian cycle. 
The conditioning experiments were stopped after the animals performed ~100 
trials (reward size, ~0.01 ml of water) or when they showed a drop in motivation. 
Additional water was supplemented after the experiment to keep the weight stable.

Surgery for optogenetic stimulation. For optogenetic experiments using DAT-iresCre 
mice (Slc6a3tm1.1(cre)Bkmn/J, called DAT-Cre in the manuscript), the animals were 
injected with rAAV5-Ef1a-DIO-hChR2(H134R)-eYFP (Addgene) in the VTA. 
Mice were anesthetized with a mixture of oxygen (1 l min−1) and isoflurane 
3% (Baxter) and placed in a stereotactic frame (Angle One, Leica). The skin 
was shaved, locally anesthetized with 40–50 µl lidocaine 0.5% and disinfected. 
The animals were placed in a stereotactic frame and bilateral craniotomy was 
made over the VTA at the following stereotactic coordinates: lateral ±0.5 mm, 
posterior −3.2 mm, depth −4.20 ± 0.05 mm from Bregma. A total volume of 500 nl 
was injected. The virus expressed for 3–4 weeks and mice were subsequently 
implanted with optic fibers (200 µm, ThorLabs, for the tethered experiments) 
or with a custom fiber-coupled (400 µm, FP400URT, Thorlabs) miniature LED 
(OVS5MBBCR4, TTI) wired to a miniature connector (Millmax). To deliver the 
light via the optical fibers to the DA neurons, the VTA was targeted with a 10° 
angle at the following coordinates: lateral ±0.9 mm, posterior −3.2 mm, depth 
−3.95 ± 0.05 mm from Bregma. The fibers were fixed on the skull with dental 
acrylic. The placement of the optical fiber and the range of virus infection were 
confirmed post hoc immunostaining (Supplementary Fig. 7). We used a primary 
antibody against Tyrosine Hydroxylase (TH, 1/500 dilution) enzyme, followed by 
secondary antibody donkey anti rabbit alexa fluor 555 (1/500 dilution).

Experimental procedures. Optical tracking and 3D reconstruction. >e local 
processing of the images of the tracking cameras on the NVIDIA Jetson TX2 
consisted of several steps carried out in multiple parallel threads:

 (1) Adjusting camera parameters: XIMEA camera parameters such as exposure, 
gain, downsampling, image format and sensor’s bit depth were initially 
adjusted. Setting the exposure level to <1.2 ms, downsampling by 2 × 2 
(pixel skipping method, $nal resolution is 640 × 512), retrieving frames in 
RAW 8-bit format and enabling ZERO-ROT mode allowed us to achieve 
a maximum performance of ~780 frames per second. >e communication 
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with the camera for grabbing and retrieving frames is done in parallel central 
processing units threads to minimize latency and maximize tracking speed 
(Supplementary Fig. 2).

 (2) Custom color demosaicing: to spectrally separate the hues of di"erent 
infrared LEDs, we developed a custom demosaicing process using OpenCV 
and CUDA libraries (Supplementary Fig. 3). >e ratio of the di"erent color 
sensitivity curves (speci$ed by the camera chip, OnSemi PYTHON 1300) 
were used as a lookup table to produce the false colors. >is process resulted 
in a mapping of 660 nm to visible red, 750 nm to orange and 810 nm to blue.

 (3) 2D target position estimation: the di"erent colors were thresholded by pre-
speci$ed values for hue, saturation and value, and the centroid of the target 
image blob was estimated by a projection barycenter algorithm23.

 (4) Communication with the central host computer: >e 2D position of the cen-
troids determined by each tracking camera per GPU was sent to the central 
host computer via the network using the UDP protocol.

The triangulation of the simultaneously received 2D target information was 
performed in the central host computer by using a projective-invariant method, 
whereby the 3D target position was chosen to minimize the quadratic distance 
between its computed 2D projections and the measured 2D targets23,55,56. Correct 
triangulation of a 3D target is theoretically possible when seen by at least two 
cameras. However, robustness to image noise and visual occlusions increases with 
the number of available cameras in the setup. In practice, 4–6 cameras were found 
to be sufficient to cover a 10-m3 room with branches. The actual spatial resolution 
of the tracking does not depend on the number of cameras, but is defined primarily 
by the resolution and optics of the cameras, their position relative to the targets and 
the quality of the spatial calibration of the system.

Calibration of the 3D tracking system. An initial geometric calibration phase of the 
system was performed by manually moving a single LED target over the entire 
measurement space. The recorded 2D projections were first used to estimate the 
3D position of the first two cameras using the five-point algorithm57 and RANSAC 
estimation methods implemented in OpenCV. The 3D target position was then 
reconstructed using the above-mentioned triangulation algorithm. The position 
of each additional camera was then estimated with OpenCV’s implementation of 
the perspective-n-point algorithm57 using the 3D triangulated points. The resulting 
estimated position of all cameras was then refined, using a bundle adjustment method 
based on a sparse Levenberg–Marquardt optimization procedure, as implemented 
in the SSBA software library58. As usual for 3D reconstruction algorithms, a final 
calibration was done to align and scale the resulting data to real-world coordinates, 
using a reference box object of known dimensions placed in the measurement space.

To illustrate the ability of the EthoLoop system to track fast-moving objects 
in large-scale environments (>100 m3), a commercial drone (Tello by DJI, Ryze 
Tech) was used (Supplementary Fig. 1 and Supplementary Video 4). The drone was 
steered around the plants in the room under manual control.

Calibration of the close-up system. The liquid lens autofocus of the close-up system 
was calibrated manually by placing an object at more than four locations in front 
of the camera while adjusting the necessary current to achieve perfect focus. These 
settings were used to fit a current–distance curve for the tunable lens.

The spatial parameters of the close-up system were calibrated using a 
semi-automated procedure. An infrared LED was placed at a random location and 
the close-up system started to scan the environment by spinning over the axes of 
both servos while capturing RAW images and thresholding in a specific range of 
the infrared LED (60 frames per second at full resolution of 1,024 × 1,280). This 
scanning stopped as soon as the LED was detected by the camera. At this point the 
close-up system started to move in steps of 0.087° (in both axes of servos) every 
500 ms to locate the LED at the center of the frame. The exact 3D position of the LED 
calculated by the host machine (x,y,z), and the final angle of both servos (azimuth α, 
elevation β) were saved. The procedure was repeated several times, and the location 
xc,yc,zc of the close-up camera was computed by solving the system of equations:

tan βð Þ ¼
x ! xc

y ! yc

tan αð Þ ¼
z ! zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx ! xcÞ
2 þ ðy ! ycÞ

2

q

Finally, the angles of the servo motors were trigonometrically calculated by the 
host machine based on the spatial position of the target and respective location of 
the close-up camera and communicated via the serial port. In parallel, the distance 
from the target to the close-up camera was calculated and sent via ethernet to 
the GIGE Vision controller to focus the tunable lens on the object using the 
above-mentioned calibration curve.

Evaluation of EthoLoop system performance. 3D tracking and real-time behavior 
analysis latency. >e latency for 3D tracking was de$ned by the time between 
the appearance of a target and the 3D reconstruction. To measure this latency, a 
microcontroller (Arduino Mega) with an infrared LED (750 nm) was connected 

to the host PC and placed in the tracking area. >e host program was modi$ed 
to command the microcontroller to illuminate the LED at repeated intervals, and 
to measure the time elapsed until reception of the corresponding 3D position 
measurement of the LED. >is procedure was repeated 1,000 times at random 
intervals. >e average value gives a high estimate of the actual latency of the 
system, considering the added latency of commanding the microcontroller to turn 
on the infrared LED (Fig. 1b and Supplementary Fig 2).

The latency of the real-time behavioral analysis was defined by the time 
evolving between turning on a LED in the field of view of the close-up system, its 
correct identification by the DeepLabCut software (with pretrained network) and 
the final receipt by the host computer of the 2D coordinates (position of the LED 
within the close-up image) and likelihoods of correct identification (Fig. 1b). The 
procedure for turning on the LED and calculating the time difference was identical 
to the one described above (tracking latency).

RECO box communication latency. The latency to communicate with a RECO 
box was defined as the time between sending a command (by the host machine) 
and the reception of that command by the RECO box. For this purpose, 1,000 
commands at random intervals were sent to a RECO box to turn on the infrared 
LED. Once the LED was turned on, the cameras sent the 2D coordinate to the 
host machine for 3D reconstruction. The time difference between sending of the 
command and the reconstruction of the LED’s 3D position was calculated by the 
host machine. These measurements were then subtracted from the mean value of 
3D reconstruction latency (single target, Fig. 1b, light-red histogram) to obtain 
communication latency with the RECO box (Fig. 1b, blue histogram).

Rate of 3D tracking and real-time behavior analysis. The interval for 3D tracking 
was defined as the time between two subsequent 3D reconstructions. We recorded 
the time between reception of subsequent 3D data measurements, repeated 
over a 60-s tracking session with one, two and three targets (Fig. 1c). Real-time 
behavior analysis interval was defined as the time between subsequent detection 
and labeling of body parts. For this purpose, a moving doll was placed in front of 
the close-up camera. The body parts were labeled with the real-time DeepLabCut 
(using the pretrained network) and the time between subsequent labeled frames 
were recorded over 60 s.

Positional accuracy. An infrared LED was placed on the edge of a circular turntable 
(Thorens, TD160) spinning at 33 and 45 rounds per minute. The measurement 
was carried out in our large >10-m3 tracking arena. The tracking cameras were 
therefore >2 m from the target. In this setting (resolution of 640 × 512) one pixel 
covered roughly 7 × 9 mm2. The LED light source consisted of an actual tracking 
target including the 5-mm flat glass diffuser. The difference between the actual 
turntable radius and the radius of the circle of the trajectory tracked by the 
EthoLoop system was reported as the positional error estimated for the tracking 
system. The tracking error measured (<8 mm) was in the range of the actual target 
dimensions (Supplementary Fig. 1i).

Real-time detection of behaviors. To detect specific behaviors (rearing, Fig. 4) in 
the stream of close-up images the following steps were carried out:

 (1) Real-time classi$cation of body parts. >e close-up images were labeled 
on-the-%y using a custom-programmed real-time version of DeepLab-
Cut so^ware44. Close-up images were initially streamed at full resolution 
(1,280 × 1,024) to a computer (Dell, Optiplex 990-Intel Core i7, equipped with 
a GeForce GTX 1080 Ti graphics card), resized to 640 × 512 and saved using 
OpenCV functions. In parallel, the images were further resized to 320 × 256 
(to reduce latency and increase speed) and labeled by the DeepLabCut 
so^ware. >e deep neural network used for the classi$cation was trained with 
hand-annotated images (<400 frames) from previous recordings carried out 
under identical lighting conditions. >e tracked body parts included: eyes, 
nose, forelimbs, hind limbs and the base of the tail.

 (2) Once the body parts were labeled in an image, the frame number, the coor-
dinates of the body parts and their likelihood were saved in a single string. 
>is string was transmitted in real-time as a UDP packet to the main host 
machine. A special thread in a multithreaded tracking program was assigned 
to receive and parse the string.

 (3) Real-time detection of posture: the spatial relationship of individual real-time 
labeled body parts was used to de$ne a given posture (Fig. 4a). Speci$cally, 
rearing was detected if one of the following conditions were met:

 (a) Di"erence between the nose and hind limbs on the y axis was more than 
200 pixels and both lines connecting the nose to the hind limbs made an 
angle of less than 20° with the y axis.

 (b) Di"erence between one of the eyes and hind limbs in y axis was more than 
200 pixels and both lines connecting one eye to the hind limbs made an angle 
of less than 20° with the y axis.

 (a) Spatial constraints: in the experiments where the posture had to be carried 
out at a speci$c location (Fig. 4b–g), a prede$ned virtual sphere (200 mm) 
was placed at a chosen location. >e reward was only triggered when the 
posture was detected within the sphere.
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Real-time control of RECO box. The RECO box was controlled via a Wifi 
Arduino. After establishing the connection to the central host computer via the 
wireless network, the Arduino was waiting for incoming UDP packets. Each 
received packet was decoded and the corresponding function (reward, noise and 
so on) was activated. The delay of this process was around ~2.5 ms (Fig. 1b, blue 
histogram). The RECO boxes were attached to different branches of the lattice 
maze, and their position was determined by the tracking system using a built-in 
infrared LED (750 nm). RECO boxes indicated the availability of a reward as a 1-s 
long sound at 9 kHz repeated at 0.5 Hz. The actual reward was delivered on arrival 
of the animal within 10 cm of the RECO box.

Close-loop behavioral experiments. Mouse lemur foraging. Four to $ve RECO 
boxes were distributed at di"erent locations inside the 3D lattice maze (Fig. 2 and 
Extended Data Fig. 1). >eir activation was set in either prede$ned or random 
sequences. In experiments with de$ned sequences, a subsequent RECO box was 
activated when the animal reached a distance of 20 cm from the previous one. In 
experiments with random activation, a di"erent RECO box was chosen at random 
to be activated a^er a variable delay (0 to 60 s) as soon as the animal reached a 
distance of 1 m to the previous activated box. In both cases, the animal was given 
40 s to collect the reward from the active feeder.

Mouse lemur 3D place conditioning. On the entrance of the animal to a 15-cm 
radius sphere surrounding the selected location (place) a RECO box was activated. 
The animal was given 20 s to collect the reward from the active RECO box.

Mouse lemur behavioral conditioning (rearing). On executing the defined behavior 
(rearing) at a specified location a RECO box was activated. The animal was given 
30 s to collect the reward from the active RECO box.

Mouse place conditioning. A RECO box was placed in an arena covered with 
tree branches (Fig. 3a–d and Extended Data Figs. 2a and 5a) or in an open-field 
(Extended Data Fig. 3a). The RECO box was localized by the tracking system with 
an infrared (750 nm) LED. The activation of a feeder was signaled by a click sound, 
and liquid reward (0.01 ml of 0.1% sucrose in water) was provided on arrival near 
the RECO box. Initially, the mice were habituated to the RECO box, by providing 
rewards at random intervals.

Mouse behavioral conditioning (rearing). To detect rearing on hind limbs, a 
threshold on the z axis was defined for mice performing the task in a simple 2D 
environment where they had to rear on an elevated platform (Extended Data  
Fig. 6). For mice performing the task in naturalistic 3D environment rearing 
was the same as described in Fig. 4a. Once rearing was detected, a RECO box 
was activated and the mouse had 10 s to collect the reward. If mice did not 
spontaneously rear on the defined location, a small bell was suspended by a string 
from the ceiling (pointing toward the rearing location). Mice rapidly started 
rearing to explore the new object. The bell was removed after the tenth rearing.

Wireless mouse optogenetic place and behavioral conditioning. The wireless 
optogenetic activation of the VTA in mice in the naturalistic arena was carried out 
using a portable, remote-controlled stimulation device (Supplementary Fig. 6). 
The unit was composed of the electronic circuit board (16 × 20 mm2) taken from 
a miniature remote-controlled car (Nano Racer, Carson). The two leads originally 
powering the DC-motor were connected to the head mounted LED-fiber assembly 
targeting the VTA (see details above). The unit was powered by a rechargeable 
3.7-V lithium ion coin battery (CP 1254 A3, Varta) and attached around the neck 
of the mouse for the duration of the experiment. The optogenetic stimulation 
consisted of 8 × 20-ms pulses repeated at 10 Hz. The power output at the end of the 
fiber was ~5 mW. To control the timing of the pulses, the original remote control 
was connected to a WiFi-enabled microprocessor (MKR-1000, Arduino) circuit 
that received the commands wirelessly via a UDP protocol from the  
host computer.

Fiber-based mouse optogenetic place and behavioral conditioning. For the 
optogenetic conditioning experiments on an open-field arena the mice were 
connected to a flexible optical fiber (FC/PC 200-µm fiber, 2 m, ThorLabs) hanging 
from the ceiling. The light source was a fiber pig-tailed to a blue laser (473 nm, 
50 mW, OBIS, Coherent) controlled via a WiFi-enabled microprocessor (MKR-
1000, Arduino) circuit. The maximal power of the fiber output was 20 mW 
(measured in continuous mode using a power meter (Field Mate, Coherent)). 
Stimulation consisted of eight pulses of 4-ms duration, repeated at 30 Hz (output 
ranging from 8–12 mW). During the place conditioning experiment, mice were 
optogenetically stimulated on entering the defined location (20–25-cm radius). 
The optogenetic stimulation continued for a maximum of eight consecutive bursts 
if the mouse remained inside the target area. The place conditioning experiments 
were stopped after the animals received ~900 burst stimulations. During the 
behavioral conditioning experiments, mice were optogenetically stimulated on 
executing the defined behavior (rearing) detected with the real-time DeepLabCut 
software. The experiments were stopped after the animals received ~450 burst 
stimulations.

Mouse lemur electrophysiological recordings. Electrodes and drive. 
Custom-made tetrode wire bundles were produced by twisting and heating four 
individual 12.7-μm Tetrode Nickel-Chrome Wires covered with Easy Bond XTC 
(Sandvik). Tetrodes were inserted and glued into polyamide tubing (0.14-mm 
diameter) inside the moving part of a custom designed 3D-printed microdrive. 
>e electrode tips were cut and gold-plated with Sifco 5355 (mixed 1:1 with 
polyethylene glycol solution and carbon nanotubes, Neuralynx) to lower the 
impedance. >e free end of the tetrode was connected to a miniature connector 
(Omnetics) via a custom designed interface board. >e tetrode array was lowered 
by turning the M1 screw of the microdrive.

Electrophysiology setup. Extracellular recordings were performed using custom 
wireless data acquisition logger hardware (Spike Gadgets) together with Trodes 
software (Spike Gadgets). Acquired data were sampled at 20 kHz and broad-band 
filtered between 0.1 Hz and 10 kHz. Data were further filtered post hoc between 
600 Hz and 6 kHz for spike extraction. Spike sorting was carried out with 
semi-automated SpikingCircus and Kilosort algorithms.

Surgery. One day before the surgery the animal was administered antibiotics 
(Ceftriaxon, 50 μg g−1, intramuscular) and housed individually without food. 
Surgeries were carried out under aseptic conditions. Anesthesia was induced 
in a small Plexiglas box with a continuous flow of a mixture of oxygen with 
5% Isoflurane (Vetflurane, Virbac). After induction, the animal was removed 
from the box and placed in a custom designed stereotactic frame. Eyes were 
protected with Lacryvisc cream and whiskers and tongue were covered 
with Vaseline. Isoflurane was decreased (2.5–1%) while breathing rate and 
toe pinch reflexes were continuously monitored. The following drugs were 
administered: bupremorphine (3 μg g−1, subcutaneous), dexamethasone (0.8 μg g−1 
intramuscular), ceftriaxon (50 μg g−1, intramuscular), carprofen (22 μg g−1, 
intramuscular) and rapidocaine (100–150 μl, locally injected). The area of the 
surgical procedure was disinfected sequentially with 70% ethanol, betadine 
and chlorhexidine 1%. The cranial bones were exposed after skin incision. The 
periosteum was gently removed with cotton swabs and the skull surface was dried 
and roughened to improve glue bonding. The area for the craniotomy was located 
at 0.5 mm anterior and 3 mm lateral from the interaural midpoint and was chosen 
based on coordinates from atlases of the mouse lemur brain59–61. A thin layer of 
cyanoacrylate (5011, ERGO) was applied on the skull and holes for ground wires 
and craniotomy for electrodes were made using a dental drill. The microdrive 
was placed on the skull and fixed with dental acrylic (Lang Dental). The skin was 
closed with stitches and the animal was placed on a heating blanket for recovery. 
Animals were monitored daily and administered with bupremorphine (analgesic, 
3 μg g−1, subcutaneous) for the following week and antibiotics (ceftriaxon 
(50 μg g−1, intramuscular) for a total of 9 d.

Synchronization of electrophysiology and tracking. To synchronize the 3D position 
from the tracking system and the electrophysiology recording, a signal was sent 
from the 3D tracking program to a Wifi Arduino (MKR-1000) via the UDP 
protocol. The timing of this signal was recorded in the tracking software. On 
arrival of the UDP packet at the Wifi Arduino, a digital pulse was sent to the main 
control unit of the electrophysiology acquisition system (Spike Gadgets) that 
synchronizes the recordings in the wireless head-stage via radio frequency pulses. 
The timings of these pulses were extracted offline and aligned with  
the 3D tracking.

Post hoc data analysis. All the position data, timing and signals (stimulations 
and rewards) were stored in a text file. All post data analysis was done in R using 
OpenGL libraries (www.r-project.org).

Position data filtering. Image artifacts produced by reflections can cause false 
detections in the 3D tracking system. These false detections appear as sudden 
jumps between the actual location of the LED and the reflecting surface. To correct 
for these artifacts:

Points that appeared outside the tracking boundary were excluded.
Sudden jumps (speed >5 m s−1) inside the tracking space were excluded and 
the trajectories interpolated.
Finally, the tracking data was smoothed over all three axes using locally 
weighted regression (LOWESS function in R).

From the filtered position data, velocity and acceleration on each axis at each 
time point was computed using a moving average over a 60-ms sliding window.

Movement categorization (ethograms). Five behavioral types were automatically 
extracted from the animal’s movements using the following mutually  
exclusive rules:

‘Short quiet’: velocity was below 20 cm s−1 for less than 2 s.
‘Long quiet’: velocity was below 20 cm s−1 for more than 2 s.
‘Running’: velocity was above 20 cm s−1, and cumulative displacement was 
over 10 cm otherwise categorized into the above ‘quiet’ states, depending on 
duration.
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‘Jumping’: vertical acceleration equal to Earth’s gravity ±3 m s–2.
‘Falling’: vertical acceleration equal to Earth’s gravity ±3 m s–2, vertical dis-
placement above 20 cm and the average horizontal velocity below 50 cm s−1.

Distance between animals during quiet states. In tracking sessions with two animals, 
when both animals were at long quiet state, we computed the 3D distance between 
them and the amount of time they were at this distance. A histogram of distances 
binned at 20-cm intervals was plotted where the y axis represents the percentage of 
time spent at each interval.

State transitions. State transitions were defined by the event when a lemur changed 
from one state to another state. The distances between two mouse lemurs were 
calculated when one of them (lemur A) transitions from ‘long quiet’ to ‘running’ 
state (STQ→R) while the other animal was in ‘running’ state (lemur B). These 
distances were all binned in 200 mm intervals and the number of STQ→R at each 
interval was calculated. At each distance interval, the probability of STQ→R of lemur 
A on approaching lemur B was estimated as the number of STQ→R divided by the 
total duration where distance between two animals was within the interval. To 
detect whether lemur B was approaching lemur A or moving away, the distance 
between them was also calculated 2 s before STQ→R of lemur A.

Analysis of closed-loop experiment with RECO box. In the closed-loop experiments 
using RECO box (place and behavior conditioning in mice and mouse lemurs) 
the time until the animals activate the RECO box for the 50th time by entering 
conditioned location or executing the conditioned behavior was divided into three 
equal time bins termed beginning, middle and end.

Analysis of the operant conditioning by optogenetic stimulation. In the place 
conditioning sessions, the time until the first 50th entrance to the conditioned 
place and in the behavioral conditioning session the time until the first 100 
rearings was divided into three equal time bins termed beginning, middle  
and end.

3D reconstruction of lattice maze. All 60 cubes connecting different branches of 
the lattice maze were numbered. Each branch in the lattice maze was defined by 
its thickness (4, 6, 12 and 24 mm) and the cube numbers connecting them to each 
other. The 3D coordinate of the first cube was manually measured in the real-world 
coordinates and set as the base for reconstructing the lattice maze in 3D. The 3D 
position of all cubes in the lattice maze was reconstructed relative to the base cube 
(considering the constant 3D distance between neighboring cubes). Finally, the 
whole lattice maze was reconstructed by adding the branches while knowing their 
connecting cubes.

Analysis of electrophysiology. Spike rates (for the color-coded trajectories in  
Fig. 6a,c,e) were calculated by averaging the number of spikes during a sliding 
window (500 ms). The trajectories of the mouse lemurs were divided into bins  
of 13 cm displacement length. Spike rates were assigned to each bin by counting  
the number of spikes divided by the time taken to complete the displacements.  
The floor (Fig. 6b) was defined as the first 30 cm above ground.

For cells with spatially restricted firing, a virtual 10-cm sphere was initially 
placed at the center of the branch. All passages through the sphere with their 
respective firing rate were aligned based on their minimum distance to the center 
of the sphere (time zero is when the minimum distance happens for each passage, 
Fig. 6d). Iteratively, the sphere was moved along the branch and the firing rate of all 
trajectories were calculated and aligned. The sphere movement was stopped once 
the average firing rate of all trajectories reached its maximum value when passing 
the center of the sphere. This center of the sphere at this location was considered to 
be the center.

For a more detailed analysis (Fig. 6e–j), the direction of displacement was also 
added as a factor, creating directional vectors. The vectors were color-coded based 
on the spike rate and the thickness of branches (4 and 6 mm considered as thin, 
and 12 and 24 mm considered as thick). To quantify the movement along branches, 
the area around the connecting cubes (radius of 5 cm) were excluded from this 
analysis. The nomenclature of the directions (north, south, east, west, up, down) 
were defined with regards to the x, y and z axis of the lattice maze and independent 
of the real-world coordinates.

In vivo estimation of tetrode position in the mouse lemur brain. The position 
of the tetrode bundles was determined by the 3D reconstruction of computer 
tomography scans acquired in the anesthetized animals (isoflurane, as detailed 
above, scan time, 3 min), which were carried out at the MicroCT platform of Paris 
Descartes University. The position of the brain areas with respect to the skull and 
the tetrodes (reconstructed by the computer tomography data) were estimated 
based on the manual alignment of existing data from high-resolution MRI atlas61, 
Supplementary Fig. 7) using the AMIRA software (Thermo Fisher Scientific).

Statistics and reproducibility. All the statistical analysis was carried out using 
R. A two-sided two-sample Kolmogorov–Smirnov test was used to compare 
distributions in Extended Data Figs. 1g and 6b. For all one-way repeated measure 

analysis of variance (ANOVA) tests, Mauchly’s test was used to test the sphericity 
assumption and the Shapiro–Wilk test was performed to test the normality 
assumption (Figs. 3d, 4e and 5e,i and Extended Data Figs. 3b and 7b). A pairwise 
t-test was performed as post hoc analysis with the Bonferroni correction for 
multiple comparison. For the analysis of the directional-branch related cell 
(Extended Data Fig. 8) we performed two independent nonparametric one-way 
ANOVA tests (Kruskal–Wallis test), since both assumptions of normality and 
homogeneity of variance were not met.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The MRI Atlas for the mouse lemur is available at https://www.nitrc.org/projects/
mouselemuratlas. Source data for Figs. 1 and 3–6 as well as source data for 
Extended Data Figs. 1–3, 6, 7 and 10 are provided. The original raw data containing 
all 3D trajectories, feedback signals and electrophysiology data is only available 
upon request due to the large file sizes. Source data are provided with this paper.

Code availability
All the codes for tracking (GPU units and host machine), RECO boxes and 
real-time labeling of body parts are available at www.huberlab.org/EthoLoop/
software. R codes used for analysis are available upon request.
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Extended Data Fig. 1 | Foraging mouse lemur in the lattice maze with 5 RECO-boxes. a, Five RECO-boxes (colored cubes) were spatially distributed at 

different locations of the lattice maze. RECO-boxes were activated in different sequences. b,c, Ten minutes of 3D trajectory of the mouse lemur where 

the RECO-boxes are activated in a circular (b) or non-circular order (c). The trajectory color is based on the currently activated RECO-box. e,f, Speed of 

locomotion (color-coded) under dim light (e) and complete darkness (f). g,h, The number of jumps (g) (12 time intervals for 1 mouse lemur, two-sided 

Wilcoxon signed rank test, *P=0.0207) as well as the overall speed (h) was reduced in the absence of light (blue) compared to the dimly lit condition  

(red, two-sample Kolmogorov-Smirnov test, two sided, ***P< 2.210-16). The boxplot in (g) represents the upper and lower quartiles as well as the median.
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Extended Data Fig. 2 | Mouse place-conditioning in naturalistic conditions. a, The behavioral arena was filled with tree branches and included a 

RECO-box (yellow cube). Mice were conditioned to visit one of three unmarked locations (colored spheres). b, Number of entries to the conditioned place 

1 and 2 during each session for all mice (N=4). Bars represent standard error of mean. c–f, 3D trajectories of the beginning, middle and end of all sessions 

for all four mice that underwent 3D place conditioning. Trajectories of Day 3 for Mouse N3 shown in Fig. 3b is repeated here. Three different conditioned 

locations are shown in green, red and purple spheres. The time to reach the criteria condition (50th entrance to the conditioned place) is noted on  

the right.
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Extended Data Fig. 3 | Mouse place-conditioning in an open-field arena. a, A flat open-field arena for freely moving mice containing a single RECO-box 

and differently shaped objects placed at the four corners. The mice were trained to visit one of the four corners of the arena. Every session a different 

corner was reinforced. b, Number of entries to the conditioned place for all four days of training. For all days the mice entered the conditioned place 

more frequently (N= 6 mice; one-way repeated measure ANOVA; Two-sample pairwise t-test; Bonferroni correction for multiple comparison; beginning 

versus end; Day 1: ** P=0.009, Day 2: ** P=0.008; Day 3: *** P=2.910-7; Day 4: P=0.006). Error bars represent SEM. c–h, Original tracking traces of the 

beginning, middle and end of all sessions (four corners - illustrated with colored circles) for all six mice that underwent place conditioning. The time to 

reach the criteria condition (50th entry) is noted on the right.
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Extended Data Fig. 4 | Trajectory of a mouse lemur during a place-conditioning experiment in the lattice maze. a, Traces of a second conditioning 

experiment of a mouse lemur in the 3D lattice maze at the beginning, middle, and end of a behavioral session. The blue sphere indicates the location which 

was conditioned. b, The number of entries to the conditioned place across a behavioral session. c, Entries to the conditioned place across the session.
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Extended Data Fig. 5 | Mouse operant-conditioning of automatically detected behavior in naturalistic environments. a–c, Additional 3D trajectories of 

three mice during conditioning of automatically detected postures. The time to reach the criteria condition (50th rearing) is noted on the right.
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Extended Data Fig. 6 | Mouse operant-conditioning of automatically detected behavior in an open-field arena. a, Open-field arena for mice with an 

elevated platform and a RECO-box. The color code indicates the height of the tracked marker on the neck of the mouse. b, Summary data from 3 mice 

across the sessions (N=3 mice). c–e, Trajectories of three mice during condition sessions where the number of rearings increased. The time to reach the 

criteria condition (50th rearing) is noted on the right.
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Extended Data Fig. 7 | Place-conditioning using wireless and tethered optogenetic stimulation of VTA. a, The red and green spheres indicate the 

conditioning locations in a naturalistic arena for mice using wireless optogenetics. b, Summary data of first day place conditioning session using wireless 

(3D, 2 mice) and tethered (2D, 2 mice) optogenetic VTA stimulation. The data from the wireless and tethered optogenetic were grouped together based 

on the day the place conditioning experiments were carried out. Mice were naive on the first day. The number of entries to the conditioned place increased 

within a session (N= 4 mice; one-way repeated measure ANOVA; F(2,6)=10.916; main effect P=0.01; pairwise two-sample t test; Bonferroni correction 

for multiple comparison; beginning versus end *P=0.025; beginning versus middle; P=053; n.s is not significant). Error bars represent SEM. c,d, Original 

trajectories of two place-conditioning sessions in 3D environment using wireless optogenetics for two mice (trajectories for Day 2 in (d) are the same as 

the one shown in Fig 5.c, The colored spheres (red and green) show the conditioned places. e,f, Original trajectories of two place conditioning sessions for 

two mice in the open-field arena using tethered optogenetics. The colored circles (red and green) show the conditioned locations. The time to reach the 

criteria condition (50th entrance to the conditioned place) is noted on the right.
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Extended Data Fig. 8 | Automatically reinforcing postures using wireless and tethered optogenetic VTA stimulation. a, A arena covered with branches 

for mice with an experimenter-defined area where rearing was conditioned (red sphere). 3D trajectories of an additional mouse during a session with 

optogenetic reinforcement of an automatically detected behavior syllable (rearing, red arrows). b, Schematic representation of the information flow during 

optogenetic VTA DA neurons stimulation in 2D open-field arena. The steps are identical to Fig. 6a, except that the detection of a behavioral event triggers 

tethered optogenetic stimulation of VTA DA neurons. c, 3D trajectory of three mice during the session of reinforcement of an automatically detected 

behavior syllable (rearing) using tethered optogenetics in 2D environment. The color code indicates the height of the mouse. The time to reach the criteria 

condition (100th rearing) is noted on the right.
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Extended Data Fig. 9 | Additional CA1 neurons with spatially restricted activity. a, CA1 neuron showing increased activity preferentially on a single 

branch. b, CA1 neuron from different session (but same animal) showing increased activity near a feeder (gray square). c, CA1 neuron from the same 

session as (b) but showing increased activity at two different locations.
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Extended Data Fig. 10 | Detailed analysis of a directional cell (Fig. 6). This neuron showed the highest activity when moving on a thin branch towards 

the north of the maze. Each dot represents the average spike rate during a 13cm segment. Kruskal-Wallis tests; main effect P=1.110-14for thin (red) and 

P=0.007 for thick (blue) branches; Wilcoxon rank sum test for multiple comparison; Holm adjustment; red; N=32, N=35 and N=46 for North, South and 

Rest; North versus South; ***P < 10−8; North versus Rest; ***P < 10−8; South versus Rest; **P=0.0018; blue; N=27, N=23 and N=84 for North,  

South and Rest; North versus South; **P=0.006; North versus Rest; *P=0.03; South versus Rest; P=0.14; n.s not significant;). Bars represent the standard 

error of mean.
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